
Geometry II Chapter 6 Lecture Notes Fall 2023

§4.1Geometry of Simplicial Complexes

Definition Let V be a vector space over R1 and let C be a subset of V. C is convex if

c1 c2 ∈ C =⇒ tc1 + (1− t)c2 ∈ C for all t ∈ I = [0, 1].

In R2, {v0, v1, v2} is c-independent if and only if v0, v1 and v2 are not collinear.

Definition A set {v0, v1, . . . , vk} of vectors in a vector space V is convex-independent or c-
independent if the set {v1−0, v2 − v0, . . . , vk − v0} is linearly independent. since

0 =
∑
j ̸=ℓ

aj (vj − vℓ) =
∑
j ̸=ℓ

aj (vj − v0)−

(∑
j ̸=ℓ

aj

)
(vℓ − v0) =⇒ aj = 0 for all j ̸= ℓ,

this definition does not depend on which vector is called v0.

Example In R2, {v0, v1, v2} is c-independent if and only if v0, v1 and v2 are not collinear.

Theorem Suppose {v0, v1, . . . , vk} is a c-independent set. Let C be the convex set generated
by {v0, v1, . . . , vk}. Then

C =

{
v =

k∑
i=0

aivi | ai ≥ 0 for all i and
k∑

i=0

ai = 1

}
= [v0, v1, . . . , vk]

and it is called a k-simplex (or a closed simplex of dimension k). Furthermore, each v ∈ C is

uniquely expressible in the form v =
k∑

i=0

aivi with ai ≥ 0 and
k∑

i=0

ai = 1, where the coefficients

ai, are called the barycentric coordinates of v.

Example For {v0, v1} vectors in R1, the simplex [v0, v1] is the closed interval [v0, v1]. For
{v0, v1, v2} in R2, [v0, v1, v2] is the triangle with vertices v0, v1 and v2. The centroid of this
triangle is the point with barycentric coordinates (1/3, 1/3, 1/3). For V = Rn, the simplex
[v0, v1, . . . , vk] is a compact metric space (it is closed and bounded) in the relative topology. In
fact, using barycentric coordinates, it is not difficult to see that [v0, v1, . . . , vk] is homeomorphic
to a product of k unit intervals. However, this homeomorphism is not an isometry.

Definition Let {v0, v1, . . . , vk} be a c-independent set. The set{
v ∈ [v0, v1, . . . , vk] | ai > 0 for all i and

k∑
i=0

ai = 1

}
= (v0, v1, . . . , vk)

is called an open simplex. We shall also denote an open simplex by (s) and the corresponding
closed simplex by [s].

Let [s] = [v0, v1, . . . , vk] be a closed simplex. The vertices of [s] are the points v0, v1, . . . , vk. The
closed faces of [s] are the closed simplices [vj0 , vj1 , . . . , vjh ], where {j0, j1, . . . , jh} is a nonempty
subset of {0, 1, . . . , k}. The open faces of the simplex [s] are the open simplices (vj0 , vj1 , . . . , vjh).

Remarks

(1) A vertex is a 0-dimensional closed face. It is also an open face.

(2) An open simplex (s) is an open set in the closed simplex [s]. Its closure is [s].
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(3) The closed simplex [s] is the union of its open faces.

(4) Distinct open faces of a simplex are disjoint.

(5) The open simplex (s) is the interior of the closed simplex [s]; that is, it is the closed simplex
minus its proper open faces (faces ̸= (s)).

Definition A simplicial complex K (Euclidean) is a finite set of open simplices in some Rn such
that

(1) if (s) ∈ K, then all open faces of [s] ∈ K;

(2) if (s1), (s2) ∈ K, and (s1) ∩ (s2) ̸= ∅, then (s1) = (s2).

The dimension of K is the maximum dimension of the simplices of K.

Remarks If K is a simplicial complex, let [K] denote the point set union of the open simplices

of K. Then [K] is compact, and [K] =
⋃

(s) ∈ K

(s) =
⋃

(s) ∈ K

[s].

If [s] is a closed simplex, the collection of its open faces is a simplicial complex which we denote
by s.

Examples Figure 4.2 shows examples of simplicial complexes. Those shown in Figure 4.3 are
not simplicial complexes. By adding simplices, however, the point sets in Figure 4.3 can be made
into complexes (Figure 4.4). Note that a complex is more than just a point set. It is a set with
additional structure. It is possible to have two different complexes with the same point set, as
in Figure 4.5.
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Definition A subcomplex of a simplicial complex K is a simplicial complex L such that (s) ∈ L
implies (s) ∈ K.

Remark For each (s) ∈ K, the simplicial complex s is a subcomplex of K.

Definition Let K be a complex. Let r be an integer less than or equal to dim K. The r-skeleton
Kr of K is the collection Kr = {(s) ∈ K | dim s ≤ r}.
Remark The r-skeleton Kr is a subcomplex of K.

§4.3 Simplicial Approximation Theorem

Definition Let K and L be simplicial complexes. A map φ : [K]→ [L] is a simplicial map if

(1) for each vertex v of K, φ(v) is a vertex of L,

(2) for each simplex (v0, v1, . . . , vk) ∈ K, the vertices φ(v0), φ(v1), . . . , φ(vk) all lie in some
closed simplex (of dimension ≤ k) in L, and

(3) for each (s) = (v0, v1, . . . , vk) ∈ K, and p =
k∑

i=0

aivi ∈ (s), the image of p is given by

φ(p) =
k∑

i=0

aiφ(vi).

Examples In Figure 4.12, projection is a simplicial map. However, in Figure 4.13, projection is
not a simplicial map, even though conditions (1) and (3) are satisfied.

Definition Let K and L be simplicial complexes. Let f : [K]→ [L] be continuous. A simplicial
map φ : K → L is a simplicial approximation to f if f (St (v)) ⊂ St (φ(v)) for each vertex v of
K.

Theorem 1 Let K be a simplicial complex. For v vertex of K, St (v) is an open set in [K]
containing v, and v is the only vertex of K which lies in St (v). The collection {St (v)}v∈K0 is an
open covering of [K].

Theorem 2 Suppose φ : K → L is a simplicial approximation to f : [K] → [L]. Then, for any
p ∈ [K], f(p) and φ(p) lie in a common closed simplex of [L].

Theorem 3 Let φ be a simplicial approximation to f : [K] → [L]. Let K1 be a subcomplex of
K, and suppose that the restriction off to [K1] is a simplicial map. Then there exists a homotopy
between f and φ which is stationary on [K1].

Page 3



Geometry II Chapter 6 Lecture Notes(Continued)

§6.1 Simplicial Homology

We have defined the De Rham cohomology groups Hℓ(X, d) for a smooth manifold X. These
groups came from a sequence of maps

C∞(X,Λℓ−1(X))
d−→ C∞(X,Λℓ(X))

d−→ C∞(X,Λℓ+1(X))

and Hℓ(X, d) = Ker d/Im d. We saw that the dimension of H0(X, d) measured the number of
connected components of X, and we saw, at least for the circle X = S1, that the dimension
of H1(X, d) measured the number of “holes” in X. We shall now develop similar groups for
simplicial complexes. We shall study a sequence of maps

Cℓ−1
∂←− Cℓ

∂←− Cℓ+1

where each Ck is an abelian group and where ∂2 = 0. Then homology groups Hℓ will be defined
by Hℓ = Zℓ/Bℓ, where Zℓ = Ker ∂ : Cℓ → Cℓ−1 and Bℓ = Im ∂ : Cℓ+1 → Cℓ. An element of Zℓ will
geometrically be a “chain” of ℓ-simplices without boundary. An element of Bℓ, will geometrically
be a boundary of a chain of (ℓ + 1)-simplices. The boundary of a 1-simplex (v0, v1) will be the
sum of the 0-simplices v0 and v1 with appropriate signs attached. Similarly, the boundary of a
2-simplex (v0, v1, v2) will be an appropriate linear combination of its edges (v0, v1), (v1, v2) and
(v2, v0).

Definition Let s be an ℓ-simplex, with vertices v0, v1, . . . , vℓ. Two orderings (vj0 , vj1 , . . . , vjℓ)
and (vk0 , vk1 , . . . , vkℓ) of the vertices of s are equivalent if (k0, . . . , kℓ) is an even permutation
of (j0, . . . , jℓ). This is clearly an equivalence relation, and for ℓ > 1, it partitions the orderings
of v0, v1, . . . , vℓ into two equivalence classes. An oriented simplex is a simplex s together with
a choice of one of these equivalence classes. If v0, v1, . . . , vℓ are the vertices of s, the oriented
simplex determined by the ordering (v0, v1, . . . , vℓ) will be denoted by ⟨v0, v1, . . . , vℓ⟩.
Remark Note that an oriented ℓ-simplex has a sense of direction attached to it, an oriented
2-simplex has a sense of rotation attached to it, and so on (see Figure 6.1). In fact, each ℓ-
simplex s lies in an ℓ-dimensional plane in some Rm. Orienting s by ⟨v0, v1, . . . , vℓ⟩ is the same
as orienting the ℓ-plane containing s by means of the ordered basis {v1− v0, v2− v0, . . . , vℓ− v0}.
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Definition Let K be a simplicial complex, and let Z denote the group of integers. Let Cℓ(K, Z)
denote the factor group of the free abelian group generated by all oriented simplices of K, modulo
the subgroup generated by all elements of the form ⟨v0, v1, v2, . . . , vℓ⟩+⟨v1, v0, v2, . . . , vℓ⟩. Thus
Cℓ(K, Z) is an abelian group called the group of ℓ-chains of K with integer coefficients. A typical
element of this group is of the form ∑

s an ℓ-simplex

ns⟨s⟩ (ns ∈ Z),

where, for each ℓ-simplex s, ⟨s⟩ is some fixed orientation of s, and where s with the opposite
orientation is identified with −⟨s⟩.
Remark Given an arbitrary abelian group G , the group Cℓ(K, G ) of ℓ-chains of K with coeffi-
cients in G can be defined as the set of all formal linear combinations∑

s
gs⟨s⟩ (gs ∈ G )

subject to the identifications −gs⟨v0, v1, . . . , vℓ⟩ = gs⟨v1, v0, . . . , vℓ⟩. (We are writing the group
operation in G additively.) In particular, Cℓ(K, F ) is defined for any field F in which case
Cℓ(K, F ) is a vector space over F whose dimension equals the number of ℓ-simplices of K.
We shall only be interested in the cases where G constitutes the integers Z, the reals R, the
complexes C, or the integers I2 modulo 2; that is, the group of order 2.

Definition Let ⟨s⟩ = ⟨v0, v1, . . . , vℓ+1⟩ be an oriented (ℓ + 1)-simplex. The boundary ∂⟨s⟩ of
⟨s⟩ is the ℓ-chain defined by

∂⟨s⟩ =
ℓ+1∑
j=0

(−1)j⟨v0, v1, . . . , v̂j, . . . , vℓ+1⟩

where ̂ over a symbol means that symbol is deleted.

Remark Note that ∂⟨s⟩ is well defined and that
ℓ+1⋃
j=0

[v0, v1, . . . , v̂j, . . . , vℓ+1], the union ofthe

faces occurring in ∂⟨s⟩, is the topological boundary of ⟨s⟩.
Examples

(1) ∂⟨v0, v1⟩ = ⟨v1⟩ − ⟨v0⟩.
(2) ∂⟨v0, v1, v2⟩ = ⟨v1, v2⟩ − ⟨v0, v2⟩+ ⟨v0, v1⟩ = ⟨v0, v1⟩+ ⟨v1, v2⟩+ ⟨v2, v0⟩. (see Figure 6.2)
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Definition Let K be a simplicial complex, and let G be an abelian group. The boundary map

Cℓ(K, G )
∂←− Cℓ+1(K, G )

is the group homomorphism defined by

∂

(∑
s

gs⟨s⟩

)
=
∑
s

gs ∂⟨s⟩ (gs ∈ G )

Lemma The boundary maps

Cℓ−1(K, G )
∂←− Cℓ(K, G )

∂←− Cℓ+1(K, G )

satisfy ∂2 = ∂ ◦ ∂ = 0.

Proof Since ∂ ◦ ∂ is linear, it suffices to check this on generators

⟨v0, v1, . . . , vℓ+1⟩

as follows:

∂ (∂⟨v0, v1, . . . , vℓ+1⟩) = ∂

[
ℓ+1∑
j=0

(−1)j⟨v0, . . . , v̂j, . . . , vℓ+1⟩

]

=
ℓ+1∑
j=0

(−1)j∂⟨v0, . . . , v̂j, . . . , vℓ+1⟩

=
ℓ+1∑
j=0

(−1)j
[

j−1∑
i=0

(−1)i⟨v0, . . . , v̂i, . . . , v̂j, . . . , vℓ+1⟩

+
ℓ+1∑

i=j+1

(−1)i−1⟨v0, . . . , v̂j, . . . , v̂i, . . . , vℓ+1⟩

]
=

∑
i<j

(−1)i+j⟨v0, . . . , v̂i, . . . , v̂j, . . . , vℓ+1⟩

+
∑
i>j

(−1)i+j−1⟨v0, . . . , v̂j, . . . , v̂i, . . . , vℓ+1⟩

=
∑
i<j

[
(−1)i+j + (−1)i+j−1

]
⟨v0, . . . , v̂i, . . . , v̂j, . . . , vℓ+1⟩

= 0.

Definition Given K and G , let

Zℓ(K, G ) = {c ∈ Cℓ(K, G ) | ∂c = 0} ,
Bℓ(K, G ) = {∂c | c ∈ Cℓ+1(K, G )} ,
Hℓ(K, G ) = Zℓ(K, G )/Bℓ(K, G ).

Elements of Zℓ(K, G ) are called cycles, and of Bℓ(K, G ) are called boundaries. The group
Hℓ(K, G ) is called the ℓth homology group of K with coefficients in G .
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Remark It turns out that the groups Hℓ(K, G ) depend only on the topology of [K]. If f : [K]→
[L] is a homeomorphism, then there is induced an isomorphism

f∗ : Hℓ(K, G )→ Hℓ(L, G ).

In particular, if K1 and K2 are simplicial complexes with [K1] = [K2], then they have the same
homology groups.

Exercise 15. Show that the vector space H0(K, R) has dimension equal to the number of
connected components in [K].

Example 1 Let K be the 1-skeleton of a 2-simplex; so K consists of three vertices v0, v1, v2 three
1-simplices (v0, v1), (v1, v2) and (v2, v0) (see Figure 6.3). Then both C0(K, Z) and C1(K, Z) are
isomorphic to Z⊕Z⊕Z. Cℓ(K, Z) = 0 for ℓ > 1. A typical element c1 of C1(K, Z) is of the form

c1 = m0⟨v0, v1⟩+m1⟨v1, v2⟩+m2⟨v2, v0⟩ (m0, m1, m2 ∈ Z).

Its boundary ∂c1 is given by

∂c1 = m0 (⟨v1⟩ − ⟨v0⟩) +m1 (⟨v2⟩ − ⟨v1⟩) +m2 (⟨v0⟩ − ⟨v2⟩)
= (m2 −m0) ⟨v0⟩+ (m0 −m1) ⟨v1⟩+ (m1 −m2) ⟨v2⟩

Thus c1 ∈ Z1(K, Z) if and only if

m2 −m0 = 0, m0 −m1 = 0, m1 −m2 = 0, ⇐⇒ m0 = m1 = m2,

so
Z1(K, Z) = {n (⟨v0, v1⟩+ ⟨v1, v2⟩+ ⟨v2, v0⟩) | n ∈ Z} ∼= Z

Furthermore, B1(K, Z) = 0 because C2(K, Z) = 0. Hence

H1(K, Z) = Z1(K, Z)/B1(K, Z) ∼= Z.

To compute H0(K, Z), note that a typical cycle c0 ∈ Z0(K, Z) = C0(K, Z) is of the form

c0 = n0⟨v0⟩+ n1⟨v1⟩+ n2⟨v2⟩ (n0, n1, n2 ∈ Z).

Then c0 = ∂c1 for some

c1 = m0⟨v0, v1⟩+m1⟨v1, v2⟩+m2⟨v2, v0⟩ ∈ C1(K, Z)
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if and only if there exist (integer) solutions to the equations

m2 −m0 = n0, m0 −m1 = n1, m1 −m2 = n2 ⇐⇒ n0 + n1 + n2 = 0.

Thus
B0(K, Z) = {n0⟨v0⟩+ n1⟨v1⟩+ n2⟨v2⟩ | n0 + n1 + n2 = 0} .

Let φ : Z0(K, Z)→ Z be the homomorphism defined by

φ (n0⟨v0⟩+ n1⟨v1⟩+ n2⟨v2⟩) = n0 + n1 + n2.

Then the kernel of φ is just B0(K, Z); thus

H0(K, Z) = Z0(K, Z)/B0(K, Z) ∼= Z.

Example 2 Let K be the complex consisting of all the faces of a 2-simplex (v0, v1, v2). Then,
as in Example 1,

H0(K, Z) ∼= Z.

Moreover, as before,

Z1(K, Z) = {n (⟨v0, v1⟩+ ⟨v1, v2⟩+ ⟨v2, v0⟩) | n ∈ Z} .

Now, however,
C2(K, Z) = {n⟨v0, v1, v2⟩ | n ∈ Z},

so that

B1(K, Z) = {∂ (n⟨v0, v1, v2⟩) | n ∈ Z}
= {n (⟨v1, v2⟩ − ⟨v0, v2⟩) + ⟨v0, v1⟩ | n ∈ Z}
= {n (⟨v0, v1⟩+ ⟨v1, v2⟩+ ⟨v2, v0⟩) | n ∈ Z}
= Z1(K, Z)

Hence

H1(K, Z) = Z1(K, Z)/B1(K, Z) = 0.

Finally, since ∂ (n⟨v0, v1, v2⟩) = 0 if and only if n = 0, Z2(K, Z) = 0, and hence

H2(K, Z) = 0.

Definition Let K be a simplicial complex. The ℓth Betti number βℓ of K is the integer

βℓ = dimHℓ(K, R).

The Euler characteristic χ(K) of K is the integer

χ(K) =
dimK∑
ℓ=0

(−1)ℓβℓ.
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Theorem Let K be a simplicial complex. For each ℓ with 0 ≤ ℓ ≤ dimK, let αℓ denote the
number of ℓ-simplices in K. Then

χ(K) =
dimK∑
ℓ=0

(−1)ℓαℓ;

that is, χ(K) is equal to the number of vertices − the number of edges + the number of 2-faces
. . . .

Proof For each ℓ, 0 ≤ ℓ ≤ dimK, consider the linear map

Cℓ−1(K, R) ∂←− Cℓ(K, R),

where C−1 is by definition the zero space. Then, by the rank and nullity theorem of linear
algebra,

αℓ = dimCℓ(K, R) = dimKer ∂ + dim Im ∂

= dimZℓ(K, R) + dimBℓ−1(K, R) (ℓ = 0, 1, . . . , dimK).

Moreover,

βℓ = dimHℓ(K, R) = dim [Zℓ(K, R)/Bℓ(K, R)]
= dimZℓ(K, R)− dimBℓ(K, R).

Thus

χ(K) =
dimK∑
ℓ=0

(−1)ℓβℓ =
dimK∑
ℓ=0

(−1)ℓ [dimZℓ(K, R)− dimBℓ(K, R)]

=
dimK∑
ℓ=0

(−1)ℓ dimZℓ(K, R) +
dimK∑
ℓ=0

(−1)ℓ+1 dimBℓ(K, R)

=
dimK∑
ℓ=0

(−1)ℓ dimZℓ(K, R) +
dimK∑
ℓ=1

(−1)ℓ dimBℓ−1(K, R) (since dimBℓ = 0 for ℓ = dimK)

=
dimK∑
ℓ=0

(−1)ℓ [dimZℓ(K, R) + dimBℓ−1(K, R)]

=
dimK∑
ℓ=0

(−1)ℓαℓ

Remark If [K] is homeomorphic to a connected compact orientable 2-dimensional manifold,
then it turns out that β0 = 1 and β2 = 1, so that

χ(K) = β0 − β1 + β2 = 2− β1 ⇐⇒ β1 = 2− χ(K).

Furthermore, β1 is always even for suchK. It can be shown that any such surface is homeomorphic

to a sphere with a certain number of “handles” attached;
1

2
β1 is just the number of handles (see

Figure 6.4)

Thus the homology groups completely determine the homeomorphism class of connected compact
orientable surfaces. However, for higher dimensional manifolds, the homology groups contain
comparatively little information.
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Remark We have been discussing a homology theory for simplicial complexes, that is, a theory
arising from a sequence of groups and homomorphisms

· · · ∂←− Cℓ−1(K, R) ∂←− Cℓ(K, R) ∂←− Cℓ+1(K, R)←− · · · .

where the map ∂ lowers the dimension of chains. On the other hand, in studying De Rham
cohomology, we used a sequence

· · · d−→ C∞(X, Λℓ−1(X))
d−→ C∞(X, Λℓ(X))

d−→ C∞(X, Λℓ+1(X)) −→ · · · .

where the map d raised dimension (degree). In order to compare these two theories, it is conve-
nient to define a simplicial cohomology theory. This is done by passing to dual spaces.

Definition Let K be a simplicial complex. For 0 ≤ ℓ ≤ dimK, let

Cℓ(K) = [Cℓ(K, R)]∗.

Let ∂∗ : Cℓ(K) → Cℓ+1(K) be the adjoint of the map ∂ : Cℓ+1(K, R) → Cℓ(K, R). Thus ∂∗ is
defined by

[∂∗ (φ)] (c) = φ (∂c) for each φ ∈ Cℓ(K), and for each c ∈ Cℓ+1(K, R).

Then we get a sequence

· · · −→ Cℓ−1(K)
∂∗
−→ Cℓ(K)

∂∗
−→ Cℓ+1(K) −→ · · · .

Moreover, ∂∗ ◦ ∂∗ = 0 since ∂ ◦ ∂ = 0. Let

Zℓ(K) =
{
φ ∈ Cℓ(K) | ∂∗φ = 0

}
,

Bℓ(K) =
{
∂∗φ | φ ∈ Cℓ−1(K)

}
,

Hℓ(K) = Zℓ(K)/Bℓ(K).

Elements of Cℓ(K) are called cochains; elements of Zℓ(K) are cocycles; elements of Bℓ(K) are
coboundaries. The map ∂∗ is the coboundary operator. Hℓ(K) is the ℓth cohomology group of K.

Exercise 16. Verify that Hℓ(K) is isomorphic to [Hℓ(K, R)]∗.
We shall need an explicit formula exhibiting the effect of the coboundary operator ∂∗. For each
oriented ℓ-simplex ⟨s⟩ of K, let φ⟨s⟩ ∈ Cℓ(K) be defined by

φ⟨s⟩⟨t⟩ =


1 if ⟨t⟩ = ⟨s⟩
−1 if ⟨t⟩ = −⟨s⟩
0 if ⟨t⟩ ≠ ±⟨s⟩
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Thus, if {⟨s1⟩, . . . , ⟨sm⟩} is a basis for Cℓ(K, R) (so that {s1, . . . , sm} is the set of all ℓ-simplices of
K), then {φ⟨s1⟩, . . . , φ⟨sm⟩} is the dual basis for Cℓ(K). Since ∂∗ is linear, we need only compute
the effect of ∂∗ on these generators φ⟨s⟩.

Lemma

∂∗φ⟨v0,..., vℓ⟩ =
∑′

v

φ⟨v, v0,..., vℓ⟩,

where
∑′

v

denotes the sum over all vertices v ∈ K such that (v, v0, . . . , vℓ) is an (ℓ+1)-simplex

of K.

Proof We need only check this formula on oriented (ℓ+ 1)-simplices

⟨t⟩ = ⟨w0, w1, . . . , wℓ+1⟩

of K. If we set ⟨s⟩ = ⟨v0, v1, . . . , vℓ⟩, the left side yields(
∂∗φ⟨s⟩

)
(⟨t⟩) = φ⟨s⟩ (∂⟨t⟩)

= φ⟨s⟩

(
ℓ+1∑
i=0

(−1)i⟨w0, . . . , ŵi, . . . , wℓ+1⟩

)

=
ℓ+1∑
i=0

(−1)iφ⟨s⟩ (⟨w0, . . . , ŵi, . . . , wℓ+1⟩)

But each term of this sum is zero unless, for some j, (w0, . . . , ŵj, . . . , wℓ+1) = (s); that is, unless
(s) is a face of (t). If (s) is a face of (t), then (t) = (v, v0, . . . , vℓ) for some vertex v ∈ K, in
which case either

(1) ⟨t⟩ = ⟨v, v0, . . . , vℓ⟩ and
(
∂∗φ⟨s⟩

)
(⟨t⟩) = 1; or

(2) ⟨t⟩ = −⟨v, v0, . . . , vℓ⟩ and
(
∂∗φ⟨s⟩

)
(⟨t⟩) = −1.

Thus

(
∂∗φ⟨s⟩

)
(⟨t⟩) =


1 if ⟨t⟩ = ⟨v, v0, . . . , vℓ⟩ for some v

−1 if ⟨t⟩ = −⟨v, v0, . . . , vℓ⟩ for some v

0 in all other cases

=

(∑′

v

φ⟨v, v0,..., vℓ⟩

)
(⟨t⟩)

Since this holds for arbitrary ⟨t⟩, the formula is established.

§6.2 De Rham’s Theorem

Definition A smoothly triangulated manifold is a triple (X, K, h), where X is a C∞ manifold,
K is a simplicial complex, and h : [K] → X is a homeomorphism such that for each simplex s
of K, the map h|[s] : [s]→ X has an extension h|s to a neighborhood U of [s] in the plane of [s]
such that h|s : U → X is a smooth submanifold.
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Remark If dim X = n, we need only require that this last condition be satisfied for each n-
simplex of K, since every simplex of K is a face of an n-simplex and since restrictions of smooth
maps to submanifolds are smooth.

Example Let X = Sn. Let K be the n-skeleton of an (n+ 1)-simplex circumscribed about Sn.
Let h : [K] → Sn be radial projection. Then (X, K, h) is a smoothly triangulated manifold
(Figure 6.5).

Remark It can be shown that every compact smooth manifold can be smoothly triangulated.
The proof is difficult and will not be presented here. Note that smoothly triangulated manifolds
are compact because [K] is compact for each (finite) simplicial complex K.

The goal of this section is to show that for smoothly triangulated manifolds (X, K, h), the De
Rham cohomology of X is isomorphic to the simplicial cohomology of K. For this, we shall need
the following facts about barycentric coordinates. Recall that we have previously discussed the
barycentric coordinates of a point relative to the vertices of a simplex containing it. We now
extend this concept.

Definition Let K be a simplicial complex and let v be a vertex of K. The star of v, denoted
St (v), is the point set

St (v) =
⋃

v ∈ [s]
(s) ∈ K

(s) (an open set in [K] containing v, and v is the only vertex of K lies in St (v))

Definition Let K be a simplicial complex and let v1, . . . , vm denote the vertices of K. Suppose
x ∈ [K]. For 1 ≤ j ≤ m, the jth barycentric coordinate bj(x) of x is defined as follows. If
x /∈ St (vj), then bj(x) = 0; if x ∈ St (vj), then x ∈ (s) for some simplex s having vj as a vertex,
and bj(x) is equal to the barycentric coordinate of x in s relative to the vertex vj.

Remark The following facts are easily verified.

(1) bj : [K]→ R is a continuous function.

(2) bj(x) ≥ 0 for all 1 ≤ j ≤ m and
m∑
j=1

bj(x) = 1 for each x ∈ [K].
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(3) x =
m∑
j=1

bj(x)vj.

(4) bj0(x) ̸= 0, bj1(x) ̸= 0, . . . , bjℓ(x) ̸= 0 for some x ∈ [K] if and only if vj0 , . . . , vjℓ are the
vertices of an ℓ-simplex of K.

Definition Let K be a simplicial complex, and let s be a simplex of K. The star of s, denoted
St (s), is the union of all the open simplices (t) of K such that (s) is a face of (t).

Remarks The following facts are easily verified.

(1) For s = v a 0-simplex (i.e. a vertex) of K, St (s) = St (v), as defined above.

(2) St (s) is an open set in [K]. (This is an elementary consequence of (3).)

(3) If (s) = (vj0 , . . . , vjℓ) and x ∈ [K], then x ∈ St (s) if and only if bji(x) ̸= 0 for all 0 ≤ i ≤ ℓ.

(4) If (s) = (vj0 , . . . , vjℓ), then

[K] \ St (s) = {x ∈ [K]; bji(x) = 0 for some 0 ≤ i ≤ ℓ} .

(5) If s1 and s are ℓ-simplices of K with s1 ̸= s, then [s1] ⊂ [K] \ St (s).

Given a smoothly triangulated manifold (X, K, h), we want to define, for each ℓ, an isomorphism
from Hℓ(X, d) onto Hℓ(K). To do this, note that homomorphisms f̃ℓ : H

ℓ(X, d) → Hℓ(K) are
defined whenever there is given a sequence of linear maps fℓ : C∞(X, Λℓ(X)) → Cℓ(K) such
that ∂∗ ◦ fℓ = fℓ+1 ◦ d for all ℓ.

· · · → C∞(X, Λℓ(X)) C∞(X, Λℓ+1(X))→ · · ·

· · · → Cℓ(K) Cℓ+1(K) → · · ·

fℓ

d

fℓ+1

∂∗

For then fℓ(Z
ℓ(X, d)) ⊂ Zℓ(K), because dω = 0 (ω ∈ Cℓ(X, d)) implies that

∂∗ (fℓ(ω)) = fℓ+1(dω) = fℓ+1(0) = 0.

Also fℓ(B
ℓ(X, d)) ⊂ Bℓ(K), because ω = dτ (τ ∈ Cℓ−1(X, d)) implies that

fℓ(ω) = fℓ(dτ) = ∂∗ (fℓ−1(τ)) ∈ Im ∂∗.

Thus fℓ induces

f̃ℓ : H
ℓ(X, d) = Zℓ(X, d)/Bℓ(X, d)→ Zℓ(K)/Bℓ(K) = Hℓ(K).

We now proceed to define such a sequence of linear maps∫
ℓ

: C∞(X, Λℓ(X))→ Cℓ(K).

For ω ∈ C∞(X, Λℓ(X)),

∫
ℓ

(ω) will be a linear functional on Cℓ(K). Thus it suffices to specify

the values of

∫
ℓ

(ω) on basis elements of Cℓ(K), that is, on oriented ℓ-simplices ⟨s⟩. To do this,
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consider the smooth map hs : U → X. Then h∗
s(ω) is a smooth ℓ-form on U, an open set in the

plane of [s]; that is, in an ℓ-dimensional Euclidean space. We define

∫
ℓ

(ω) (⟨s⟩) to be the integral

of this ℓ-form over ⟨s⟩ : ∫
ℓ

(ω) (⟨s⟩) =
∫
⟨s⟩

h∗
s(ω).

In other words, let (r1, . . . , rℓ) denote coordinates in the plane of [s] consistent with the orien-
tation of ⟨s⟩; so if ⟨s⟩ = ⟨v0, . . . , vℓ⟩, let (r1, . . . , rℓ) be coordinates relative to the ordered basis
{v1 − v0, . . . , vℓ − v0}. Then

h∗
s(ω) = g dr1 ∧ · · · ∧ drℓ for some continuous function g on U,

and ∫
ℓ

(ω) (⟨s⟩) =
∫
[s]

g dr1 · · · drℓ (Riemann integral).

Note that this integral is independent of the homeomorphism h; that is, it depends only on the
point set h([s]) and its orientation by the change of variables theorem for integrals.

Claim : ∂∗ ◦
∫
ℓ

=

∫
ℓ+1

◦ d.

This is just Stokes’s theorem. For given any smooth ℓ-form ω and oriented (ℓ+ 1)-simplex ⟨s⟩,[∫
ℓ+1

◦ d(ω)
]
(⟨s⟩) =

∫
⟨s⟩

(hs)
∗ (dω) =

∫
⟨s⟩

d (h∗
s (ω)) =

∫
∂⟨s⟩

h∗
s (ω) (by Stokes’s theorem)

=

∫
ℓ

(ω) (∂⟨s⟩) =
[
∂∗ ◦

∫
ℓ

(ω)

]
⟨s⟩.

Thus

∫
ℓ

induces a homomorphism
˜∫
ℓ

: Hℓ(X, d)→ Hℓ(K).

Theorem (De Rham’s Theorem) Let (X, K, h) be a smoothly triangulated manifold. Then

˜∫
ℓ

: Hℓ(X, d)→ Hℓ(K)

is an isomorphism for each ℓ (0 ≤ ℓ ≤ dimX).

Remark To define the inverse of
˜∫
ℓ

for each ℓ, we construct a special partition of unity, subor-

dinate to the open covering
{St (v) | v is a vertex of K}

of X. Let v1, . . . , vm denote the vertices of K. For each 1 ≤ j ≤ m, let bj be the jth barycentric
coordinate function on [K] = X and let dimX = n,

Fj =

{
x ∈ X | bj(x) ≥

1

n+ 1

}
, Gj =

{
x ∈ X | bj(x) ≤

1

n+ 2

}
.

Then Fj and Gj are closed sets in X with the following properties (see Figure 6.6).

(1) Fj ⊂ St (vj).
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(2) X \ St (vj) ⊂ Gj.

(3) Fj ∩Gj = ∅; that is, Fj ⊂ G′
j = X \Gj.

(4) There exists a smooth function fj ≥ 0 such that fj > 0 on Fj, and fj = 0 on Gj.

Proof Fj is a closed set in the compact space X, hence is compact; thus an fj ≥ 0 can be
found which is greater than 0 on Fj and equal to 0 outside the open set X \Gj = G′

j ⊃ Fj.

(5) The closed sets Fj cover X. In particular, for each x ∈ X, fj(x) ̸= 0 for some j. Furthermore,
X \Gj = G′

j is an open covering of X.

Proof Given x ∈ X, x ∈ (s) for some simplex (s) = (vj0 , . . . , vjℓ) of dimension ℓ ≤ n. Now

bj(x) = 0 for j /∈ {j0, . . . , jℓ} and
ℓ∑

i=0

bji(x) = 1. Since ℓ+ 1 ≤ n+ 1, bji(x) ≥ 1/(n+ 1) for

some 0 ≤ i ≤ ℓ. Thus x ∈ Fji for this 1 ≤ ji ≤ m.

(6) From (5),
m∑
j=1

fj > 0, so that gj = fj/
m∑
k=1

fk is defined and smooth on X. Furthermore, {gj}

is a smooth partition of unity on X subordinate to {X \Gj = G′
j}; that is,

m∑
j=1

gj = 1, and

gj vanishes outside G
′
j. Since G

′
j ⊂ St (vj), the partition of unity {gj} is also subordinate to

the open covering {St (vj)}.

Let

{
⟨si⟩ | 1 ≤ i ≤

(
m

ℓ+ 1

)}
be a basis for Cℓ(K, R), and let

{
φ⟨si⟩ | 1 ≤ i ≤

(
m

ℓ+ 1

)}
be the

dual basis for Cℓ(K). To define the inverse linear map αℓ : C
ℓ(K) → C∞(X, Λℓ(X)), it suffices

to specify the values of αℓ on the generators φ⟨s⟩ of C
ℓ(K).

Definition For each 0 ≤ ℓ ≤ dimX, for each oriented ℓ-simplex (basis element) ⟨s⟩ = ⟨vj0 , . . . , vjℓ⟩
of Cℓ(K), αℓ

(
φ⟨s⟩
)
is the ℓ-form defined by

αℓ

(
φ⟨s⟩
)
= ℓ!

ℓ∑
i=0

(−1)igji dgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjℓ ,

where φ⟨s⟩ is the dual basis element of ⟨s⟩ in Cℓ(K), and {gj} are the smooth functions defined
above.

De Rham’s Theorem is a consequence of the following two lemmas.
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Lemma 1 There exists a sequence of linear maps

αℓ : C
ℓ(K)→ C∞(X, Λℓ(X)), for each 0 ≤ ℓ ≤ dimX,

with the following properties.

(1) d ◦ αℓ = αℓ+1 ◦ ∂∗.

(2)

∫
ℓ

◦αℓ = identity.

(3) If c0 denotes the 0-cochain such that c0(v) = 1 for each vertex v in K, then α0(c
0) = 1; that

is, α0(c
0) is the 0-form equal to the constant function 1.

(4) If ⟨s⟩ is an oriented ℓ-simplex of K, then the αℓ

(
φ⟨s⟩
)
is identically zero in a neighborhood

of X \ St (s).

Lemma 2 Let ω be a closed ℓ-form on X. Suppose

∫
ℓ

(ω) = ∂∗c for some c ∈ Cℓ−1(K). Then

there exists an (ℓ− 1)-form τ on X such that

∫
ℓ−1

(τ) = c and dτ = ω.

Remark Lemma 1 shows that
˜∫
ℓ

is surjective. For given z ∈ Zℓ(K), let ω = αℓ(z). Then

ω ∈ Zℓ(X, d) because

dω = d ◦ αℓ(z) = αℓ+1(z) ◦ ∂∗(z) = αℓ+1(0) = 0.

Furthermore,
˜∫
ℓ

(ω) =
˜∫
ℓ

◦ αℓ(z) = z. Thus

∫
ℓ

: Zℓ(X, d) → Zℓ(K) is surjective; hence so is
˜∫
ℓ

.

(Note that Property (1) says that the map αℓ induces a homomorphism α̃ℓ : H
ℓ(K)→ Hℓ(X, d).

Property (2) says that this map is a right inverse to
˜∫
ℓ

.)

Lemma 2 shows that
˜∫
ℓ

is injective. For if ω ∈ Zℓ(X, d) and

∫
ℓ

(ω) ∈ Bℓ(K), then ω ∈ Bℓ(X, d)

by Lemma 2.

Thus Lemmas 1 and 2 together do, as claimed, imply De Rham’s theorem.

Proof of Lemma 1 For notational convenience, we shall identity [K] and X through the
homeomorphism h; that is, we shall assume that [K] = X and that h = identity.

Verification of Property (1). Clearly,

d ◦ αℓ

(
φ⟨s⟩
)
= (ℓ+ 1)! dgj0 ∧ · · · ∧ dgjℓ

On the other hand,

αℓ+1 ◦ ∂∗ (φ⟨s⟩
)

= αℓ+1

(∑′

vk

φ⟨vk, vj0 ,..., vjℓ ⟩

)

= (ℓ+ 1)!
∑′

k

[
gk dgj0 ∧ · · · ∧ dgjℓ −

ℓ∑
i=0

(−1)igji dgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjℓ

]
.

Claim If the vertices vk, vj0 , . . . , vjℓ are distinct and yet are not the vertices of an (ℓ+1)-simplex
of K, then

gk dgj0 ∧ · · · ∧ dgjℓ ≡ 0.
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For, if x /∈ St (vk), then gk(x) = 0. If x ∈ St (vk), then bk(x) ̸= 0. But now bji(x) = 0 for some
0 ≤ i ≤ ℓ, for otherwise bk(x) ̸= 0, bj0(x) ̸= 0, . . . , bjℓ(x) ̸= 0, hence (vk, vj0 , . . . , vjℓ) is an
(ℓ+ 1)-simplex. But this is a contradiction. Using this i, let

U =

{
y ∈ X | bji(y) <

1

n+ 2

}
.

Then U is an open set in X containing x, and gji is identically zero on U because U ⊂ Gji . Hence
dgji ≡ 0 on U, and, in particular, dgji(x) = 0. This completes the proof of the claim.

Applying this result to the terms of the above expression for αℓ+1 ◦ ∂∗ (φ⟨s⟩
)
yields

(A)
∑′

k

gk dgj0 ∧ · · · ∧ dgjℓ =
∑

k/∈{j0,..., jℓ}

gk dgj0 ∧ · · · ∧ dgjℓ ,

since those terms on the right-hand side which do not appear on the left are identically zero; and

(B)
∑′

k

ℓ∑
i=0

(−1)igji dgk ∧ dgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjℓ

=
ℓ∑

i=0

(−1)i
∑′

k

gji dgk ∧ dgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjℓ

=
ℓ∑

i=0

(−1)i
∑

k/∈{j0,..., jℓ}

gji dgk ∧ dgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjℓ

=
ℓ∑

i=0

(−1)i
∑
k ̸=ji

gji dgk ∧ dgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjℓ

=
ℓ∑

i=0

(−1)i gji

(∑
k ̸=ji

dgk

)
∧ dgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjℓ

=
ℓ∑

i=0

(−1)i gji (−dgji) ∧ dgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjℓ

= −
ℓ∑

i=0

gji dgj0 ∧ · · · ∧ dgjℓ (since
m∑
k=1

gk = 1 =⇒
m∑
k=1

dgk = 0).

Hence, substituting (B) from (A),

αℓ+1 ◦ ∂∗ (φ⟨s⟩
)

= (ℓ+ 1)!

(
m∑
k=1

gk

)
dgj0 ∧ · · · ∧ dgjℓ

= (ℓ+ 1)! dgj0 ∧ · · · ∧ dgjℓ
= d ◦ αℓ

(
φ⟨s⟩
)
.

Verification of Property (3). Since α0

(
φ⟨vj⟩

)
= gj,

α0

(
c0
)
= α0

(
m∑
j=1

φ⟨vj⟩

)
=

m∑
j=1

gj = 1.
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Verification of Property (4). Suppose ⟨s⟩ = ⟨vj0 , . . . , vjℓ⟩. Then

αℓ

(
φ⟨s⟩
)
= ℓ!

ℓ∑
i=0

(−1)igji dgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjℓ .

Note that if x ∈ X is such that bjk(x) <
1

n+ 2
for some 0 ≤ k ≤ ℓ, then x ∈ Gjk , so that gjk and

dgjk , and hence αℓ

(
φ⟨s⟩
)
, are zero at x. Thus αℓ

(
φ⟨s⟩
)
is identically zero on{

x ∈ X | bji(x) <
1

n+ 2
for some 0 ≤ k ≤ ℓ

}
,

which is an open set containing X \ St (s).

Verification of Property (2). For ℓ = 0,

∫
0

◦α0

(
φ⟨vj⟩

)
, (j ∈ {1, . . . , m}) is the 0-cochain

given by [∫
0

◦α0

(
φ⟨vj⟩

)]
(⟨vk⟩) =

[∫
0

(gj)

]
⟨vk⟩ = gj(vk).

But note that gj(vk) = 0 for k ̸= j since vk ∈ St (vj) and gj = 0 outside St (vj). Furthermore,

1 =
m∑
j=1

gj(vk) = gk(vk) (for each k).

Hence [∫
0

◦α0

(
φ⟨vj⟩

)]
(⟨vk⟩) =

{
1 (if k = j)

0 (if k ̸= j)

= φ⟨vj⟩ (⟨vk⟩)

Since this holds for all j and k,

∫
0

◦α0 = identity as required.

Now assume Property (2) for dimension ℓ− 1. For ⟨s⟩ and ⟨s⟩ oriented ℓ-simplices of K,[∫
ℓ

◦αℓ

(
φ⟨s⟩
)]

(⟨t⟩) =
∫
⟨t⟩

αℓ

(
φ⟨s⟩
) Claim

=

{
1 if ⟨s⟩ = ⟨t⟩
0 if s ̸= t

.

Proof of Claim If s ̸= t, then

∫
⟨s⟩

αℓ

(
φ⟨s⟩
)
= 0 by Property (4) since αℓ

(
φ⟨s⟩
)
is identically

zero in a neighborhood of X \ St (s) ⊃ [t].

If ⟨s⟩ = ⟨t⟩, let ⟨r⟩ = ⟨vj1 , . . . , vjℓ⟩ and ⟨s⟩ = ⟨vj0 , vj1 , . . . , vjℓ⟩, then∫
⟨s⟩

αℓ

(
∂∗φ⟨r⟩

)
=

∫
⟨s⟩

d
[
αℓ−1

(
φ⟨r⟩
)]

=

∫
∂⟨s⟩

αℓ−1

(
φ⟨r⟩
)
.

But ∂⟨s⟩ = ⟨r⟩ plus an alternating sum of other oreiented (ℓ− 1)-simplices, so∫
∂⟨s⟩

αℓ−1

(
φ⟨r⟩
)
=

∫
⟨r⟩

αℓ−1

(
φ⟨r⟩
)
= 1 by induction.
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Hence

1 =

∫
⟨s⟩

αℓ

(
∂∗φ⟨r⟩

)
=

∫
⟨s⟩

αℓ

(
φ⟨s⟩ + terms of type φ⟨t⟩ (t ̸= s)

)
=

∫
⟨s⟩

αℓ

(
φ⟨s⟩
)
.

In order to prove Lemma 2, we shall need the following lemma.

Lemma 3 Let s be a k-simplex in Rn.

(ar) Suppose r ≥ 0 and k ≥ 1. Let ω be a smooth closed r-form defined “near” [sk−1]; that is,

defined in a neighborhood of [sk−1]. If k = r + 1, assume further that

∫
∂⟨s⟩

ω = 0. Then

there exists a smooth closed r-form τ defined near [s] such that τ = ω near [sk−1].

(br) Suppose r ≥ 1 and k ≥ 1. Let ω be a smooth closed r-form defined near [s]. Suppose τ is
a smooth (r − 1)-form defined near [sk−1] such that dτ = ω near [sk−1]. If k = r, assume

further that

∫
∂⟨s⟩

τ =

∫
⟨s⟩

ω. Then there exists a smooth (r − 1)-form τ ′ defined near [s]

such that τ ′ = τ near [sk−1], and dτ ′ = ω near [s].

Remark That the integral conditions are necessary in (ar) and (br) is a consequence of Stokes’s
theorem. For in (ar), if τ exists, then∫

∂⟨s⟩
ω =

∫
∂⟨s⟩

τ =

∫
⟨s⟩

dτ =

∫
⟨s⟩

0 = 0;

and in (br), if τ
′ exists, then ∫

⟨s⟩
ω =

∫
⟨s⟩

dτ ′ =

∫
∂⟨s⟩

τ ′ =

∫
∂⟨s⟩

τ.

Proof of Lemma 3 We shall first verify (a0) and then establish that

(a0) =⇒ (b1) =⇒ (a1) =⇒ (b2) =⇒ · · · .

Proof of (a0) : ω is a smooth 0-form; that is, a smooth function defined near [sk−1]; and dω = 0.
Hence ω is constant on the components of its domain. If k > 1, [sk−1] is connected, so ω is a
constant function c in a neighborhood of [sk−1]. Set τ = c in a neighborhood of [s]. If k = 1, then
⟨s⟩ = ⟨v0, v1⟩ for some pair of vertices v0, v1, and

0 =

∫
∂⟨s⟩

ω = ω(v1)− ω(v0).

Thus the constant value of ω near v1 equals the constant value of ω near v0; that is, ω is constant
near [sk−1] as before. Once again, set τ equal to this constant function on a neighborhood of [s].

Proof of (ar−1) =⇒ (br) : Let ω be a closed r-form (r ≥ 1) defined on an open set containing [s].
Since any open set containing [s] must contain another open set about [s] which is diffeomorphic
(smoothly homeomorphic with a smooth inverse) to an open ball, ω is exact near [s] by Poincaré’s
Lemma (Section 5.2); that is, there exists a smooth (r − 1)-form τ1 defined near [s] such that
dτ1 = ω near [s]. Now in general, τ1 will not be equal to τ near [sk−1]. Consider the difference
τ1 − τ near [sk−1]. It is closed since, near [sk−1],

d (τ1 − τ) = ω − ω = 0.
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Furthermore, if k = (r − 1) + 1 = r, then∫
∂⟨s⟩

(τ1 − τ) =

∫
∂⟨s⟩

τ1 −
∫
∂⟨s⟩

τ =

∫
⟨s⟩

dτ1 −
∫
∂⟨s⟩

τ =

∫
⟨s⟩

ω −
∫
∂⟨s⟩

τ= 0 (by hypothesis).

Thus we can apply (ar−1) to the form τ1− τ. There exists a smooth closed (r−1)-form µ defined
near [s] such that µ = τ1−τ near [sk−1]. Let τ ′ = τ1−µ. Then τ ′ is a smooth (r−1)-form defined
near [s] such that τ ′ = τ1 − µ = τ near [sk−1], and dτ ′ = dτ1 − dµ = ω − 0 = ω near [s].

Proof of (br) =⇒ (ar) : ⟨s⟩ = ⟨v0, . . . , vk⟩ for some choices of vertices v0, . . . , vk; let ⟨t⟩ =
⟨v1, . . . , vk⟩. Let F = [sk−1] \ (t). Since F is contained in a star-shaped open neighborhood U of
F (see Figure 6.7) and ω is closed near F, there exists a smooth (r − 1)-form µ defined near F
such that dµ = ω near F by the Poincaré’s Lemma. In particular, dµ = ω near [tk−2].

If k > 1, we would like to apply (br) to the forms ω and µ and the (k− 1)-simplex t. In order to

do this we must check if k − 1 = r, then

∫
⟨t⟩

ω −
∫
∂⟨t⟩

µ = 0. But, letting c = ∂⟨s⟩ − ⟨t⟩ so that

∂c = −∂⟨t⟩,∫
⟨t⟩

ω −
∫
∂⟨t⟩

µ =

∫
⟨t⟩

ω +

∫
∂c

µ =

∫
⟨t⟩

ω +

∫
c

dµ =

∫
⟨t⟩

ω +

∫
c

ω =

∫
∂⟨s⟩

ω = 0 (by hypothesis).

Applying (br), there exists a form µ′ defined near [t] such that µ′ = µ near near [tk−2] and dµ′ = ω
near [t]. Let µ2 be the form defined near [sk−1] by glueing together µ and µ′ a1ong their common
domain, an open set where they agree (Figure 6.8). Then dµ2 = ω near [sk−1], since both µ and
µ′ have this property in their domains of definition. .
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If k = 1, then [sk−1] consists of two vertices v0, v1. Since ω is closed, Poincaré’s Lemma guarantees
the existence of smooth (r− 1)-forms µi near vi (i = 0, 1), with dµi = ω. By shrinking domains,
we can assume (domain µ0) and (domain µ1) are disjoint (Figure 6.9). This defines µ2 near
[sk−1], with dµ2 = ω near [sk−1] as before.

Finally, let f be a smooth function which is identically 1 in a small neighborhood of [sk−1], and
identically zero outside the domain of µ2. Then fµ2 is a smooth (r − 1)-form defined near [s].
Let τ = d (fµ2) . Then τ is a closed r-form defined near [s], and we have near [sk−1]

τ = d (fµ2) = df ∧ µ2 + f dµ2 = dµ2 = ω,

since f ≡ 1 and df ≡ 0 near [sk−1].

Proof of Lemma 2 We shall construct inductively a sequence

τ0, τ1, . . . , τn = τ (n = dimX)

of (ℓ− 1)-forms such that

(1) τk is defined in a neighborhood of the k-skeleton
[
Kk
]
of K,

(2) dτk = ω near
[
Kk
]
,

(3) τk = τk−1 near
[
Kk−1

]
, and

(4)

∫
ℓ−1

(τℓ−1) = c.

Note that this will prove the Lemma because (4) implies that for each oriented (ℓ − 1)-simplex
⟨s⟩ of [K] and each k ≥ ℓ− 1,∫

ℓ−1

(τk) (⟨s⟩) =
∫
⟨s⟩

τk =

∫
⟨s⟩

τℓ−1 =

∫
ℓ−1

(τℓ−1) (⟨s⟩) = c (⟨s⟩) .

To construct τ0, cover
[
K0
]
by a collection of mutually disjoint balls. Since ω is closed, ω is exact

in each of these balls by Poincaré’s Lemma. Hence there exists a smooth (ℓ− 1)-form τ ′0, defined
on the union of these balls, such that dτ ′0 = ω there. If ℓ− 1 ̸= 0, take τ0 = τ ′0. If ℓ− 1 = 0, we

want

∫
0

(τ0) = c. But for vj a vertex of [K] ,

∫
0

(τ ′0) (⟨vj⟩) =
∫
⟨vj⟩

τ ′0 = τ ′0 (vj) .

Let aj = c (vj)−τ ′0 (vj) , and define τ0 on the ball about vj by frcτ0 = τ ′0+aj. Then dτ0 = dτ ′0 = ω

near
[
K0
]
, and

∫
0

(τ0) = c as required
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Now assume that τk−1 has been constructed with Properties (1)− (4). To construct τk, note that
if we can find, for each k-simplex s, a smooth (ℓ− 1)-form τk(s) defined in a neighborhood of [s]
such that d (τk(s)) = ω near [s], and τk(s) = τk−1 near [sk−1], then glueing will yield a smooth
(ℓ− 1)-form τ ′k satisfying (1)− (3).

To construct τk(s), we shall apply (bℓ) of Lemma 3. Note that ω is a smooth closed ℓ-form defined
near [s] and that τk−1 is a smooth (ℓ − 1)-form defined near [sk−1] such that dτk−1 = ω near
[sk−1]. Furthermore, if k = ℓ, then∫

⟨s⟩
ω =

∫
ℓ

(ω) (⟨s⟩) (⟨s⟩ = s together with either orientation)

= ∂∗c (⟨s⟩) (by hypothesis of Lemma 2)

= c (∂⟨s⟩)

=

∫
k−1

(τk−1) (∂⟨s⟩) (by (4) since k = ℓ)

=

∫
∂⟨s⟩

τk−1

Hence we can apply (bℓ), There exists a smooth (ℓ−1)-form τk(s) near [s] such that τk(s) = τk−1

near [sk−1] and d (τk(s)) = ω near [s].

This constructs τ ′k satisfying (1) − (3). If k ̸= ℓ − 1, set τk = τ ′k. If k = ℓ − 1, we have τ ′ℓ−1

satisfying (1) − (3), and we want τℓ−1 such that

∫
ℓ−1

(τℓ−1) = c. Let c1 = c −
∫
ℓ−1

(
τ ′ℓ−1

)
, and

define τℓ−1 in a neighborhood of
[
Kℓ−1

]
by

τℓ−1 = τ ′ℓ−1 + αℓ−1(c1),

where αℓ−1 is the linear map Cℓ−1(K)→ C∞(X, Λℓ−1(X)) defined in Lemma 1.

For each r and each oriented r-simplex ⟨s⟩, note that αr

(
φ⟨s⟩
)
is identically zero on a neighbor-

hood of X \St (s). In particular, αr

(
φ⟨s⟩
)
is identically zero near

[
Kr−1

]
. Since each c ∈ Cr(K)

is a linear combination of such φ⟨s⟩, αr(c) is identically zero near
[
Kr−1

]
for each r-cochain c.

Applying this first with r = ℓ, then with r = ℓ− 1, we find

dτℓ−1 = dτ ′ℓ−1 + d ◦ αℓ−1(c1) = dτ ′ℓ−1 + αℓ ◦ ∂∗(c1) = dτ ′ℓ−1 = ω

near
[
Kr−1

]
and

τℓ−1 = τ ′ℓ−1 + αℓ−1(c1) = τ ′ℓ−1 = τℓ−2

near
[
Kr−2

]
. Thus τℓ−1 satisfies (1)− (3) with k = ℓ− 1. Property (4) is also satisfied:∫

ℓ−1

(τℓ−1) =

∫
ℓ−1

(
τ ′ℓ−1

)
+

∫
ℓ−1

◦αℓ−1(c1) = (c− c1) + c1 = c.

Remark 1. De Rham’s theorem shows that the simplicial cohomology groups (with coefficients
in R) of a smoothly triangulated manifold (X, K, h) are isomorphic to the De Rham cohomology
groups of X. In particular, these groups are independent ofthe triangulation (K, h) of X. Since
the cohomology groups are dual to the homology groups, the groups Hℓ(K, R), for [K] a smooth
manifold, also depend on [K] only, not on the particular simplicial subdivision K.
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Remark 2. The direct sum
dimX∑
ℓ=0

⊕
Hℓ(X, d) can be given the structure of an associative

algebra as follows. Recall that
dimX∑
ℓ=0

⊕
C∞(X, Λℓ(X)) is an associative algebra under exterior

multiplication ∧.
dimX∑
ℓ=0

⊕
Zℓ(X, d) is a subalgebra, for if dω = 0 and dτ = 0, then

d (ω ∧ τ) = (dω) ∧ τ ± ω ∧ (dτ) = 0.

dimX∑
ℓ=0

⊕
Bℓ(X, d) is an ideal in

dimX∑
ℓ=0

⊕
Zℓ(X, d), for if ω = dµ and dτ = 0, then ω ∧ τ =

d (µ ∧ τ) . Hence

dimX∑
ℓ=0

⊕
Hℓ(X, d) =

dimX∑
ℓ=0

⊕(
Zℓ(X, d)/Bℓ(X, d)

) ∼= dimX∑
ℓ=0

⊕(
Zℓ(X, d)/

dimX∑
ℓ=0

⊕
Bℓ(X, d)

)

is also an associative algebra. In particular,
dimX∑
ℓ=0

⊕
Hℓ(X, d) is a ring, called the De Rham

cohomology ring of X.

It is also possible to define a product, called the cup product, of simplicial cochains in such a way

that
dimX∑
ℓ=0

⊕
Hℓ(K) becomes an algebra. It can be shown that the isomorphism∫

:
dimX∑
ℓ=0

⊕
Hℓ(X, d)→

dimX∑
ℓ=0

⊕
Hℓ(K) is then an algebra isomorphism.

Remark 3. Lemma 3 contains in disguise a proof that

Hℓ(Sn, d) =

{
0 if 0 < ℓ < n

R if ℓ = 0, n.

For if ω is a closed ℓ-form (0 < ℓ < n) defined on a neighborhood of the n-skeleton [sn] of an
(n+ 1)-simplex s, then it was shown that ω extends to a closed (and hence exact) ℓ-form on [s].
This implies that Hℓ(Sn, d) = 0 for 0 < ℓ < n. It was shown for ℓ = n that any closed n-form ω,

defined near [sn] such that

∫
∂⟨s⟩

ω is also exact. The map Zn(Sn, d)→ R defined by ω →
∫
∂⟨s⟩

ω

is then a homomorphism with kernel Bn(Sn, d). Hence Hn(Sn, d) = R. Also H0(Sn, d) = R
because Sn is connected.

We have tacitly assumed here that any closed ℓ-form ω on Sn can be extended to a closed ℓ-form
defined in a neighborhood of Sn. Ψ∗ω is such an extension, where Ψ : Rn+1 \ {0} → Sn is radial
projection.
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